
What if removing software features to make programs smaller
doesn’t save energy. . . but sometimes actually uses more?



On the Effect of Feature Reduction on
Energy Consumption: An Exploratory Study

Xhevahire Tërnava1, Romain Lefeuvre2, Quentin Perez2,3,
Djamel Eddine Khelladi2,4, Mathieu Acher2,5, Benoit Combemale2

1LTCI, Télécom Paris, Institut Polytechnique de Paris
2Univ Rennes, Inria, IRISA, 3INSA Rennes, 4CNRS, 5IUF

Paris - Rennes, France

SPLC’25, September 01-05, 2025



Context

Software powers everything in our digital society. But ICT
also consume a significant amount of energy, raising
environmental concerns

Configurable systems let developers enable or disable features,
but over time they become bloated and complex

Traditionally, ’debloating’ is meant to:

⊛ Shrink binaries
⊛ Reduce attack surfaces
⊛ Improve performance

—

But our starting point was:

⊛ Does feature reduction = energy reduction?

1 / 15



Research gap

Prior work has explored energy in configurable systems (e.g.,
feature interactions, static analysis, execution time)

Feature reduction for e.g., reducing attack surface is studied

But to our knowledge, no previous work has studied their
combined effect on energy consumption

2 / 15



Two types of feature reduction

Built-in reduction: Developers intentionally create alternative
implementations with fewer features

Concept of mkdir

GNU mkdir

—
420.60 KiB
7 options

ToyBox mkdir

—
18.60 KiB
3 options

BusyBox mkdir

—
18.70 KiB
2 options

3 / 15



Two types of feature reduction

On-demand reduction: Developers (build tools, and) debloat
software to remove unnecessary features

GNU mkdir

—
(Bloated)

Options: -m, -p, -v, -Z

Chisel
+ Usage profile
(reduce -v)

Cov
+ Usage profile
(reduce -v)

Debop
+ Usage profile
(reduce -v)

GNU mkdirchisel
(Debloated)

Options: -m, -p, -Z

GNU mkdircov
(Debloated)

Options: -m, -p, -Z

GNU mkdirdebop
(Debloated)

Options: -m, -p, -Z

3 / 15



Research questions

I. For built-in reduction, we ask how three factors:

RQ1.1 : binary size
RQ1.2 : # configuration options
RQ1.3 : execution time

impact � energy consumption

II. For on-demand, we asked the same with two factors:

RQ2.1 : binary size
- : # configuration options

RQ2.2 : execution time

impact � energy consumption

Then, we wondered about their ® correlations

4 / 15



Methodology for built-in reduction

ü 28/75 programs (e.g., mv, ls, mkdir) compared their
alternative implementations across GNU, ToyBox, and
BusyBox

ü For each program: 2 common valid configurations + input

—

Measured: binary size, # configuration options, execution
time, and energy consumption

—

Energy consumption is measured using the Jouleit1, which
leverages Intel’s RAPL counters

Each measurement was repeated 10 times (1,680, in total) on
a controlled hardware and OS setup, following best practices
to minimize noise

1
https://github.com/powerapi-ng/jouleit

5 / 15

https://github.com/powerapi-ng/jouleit


Built-in: Binary size, options, and runtime reduction

Drastically smaller binaries: all, 92.1% and 93.1%

Far fewer configuration options: all, 63.7% and 66.1%

Execution time varied per program: (few outliers)

6 / 15



Built-in: Energy consumption per program

7 / 15



Built-in: Comparative analysis (lower consumption)

7 / 15



Built-in: Comparative analysis (lower and significant)

7 / 15



Built-in: Comparative analysis (higher and significant)

36% of ToyBox and 39% of BusyBox programs use more energy
than GNU versions. Whereas, with p>0.05 are:

7 / 15



Built-in: Energy correlates with execution time

Key insight: Energy consumption is much more strongly tied to
execution time (RQ1.3) than to binary size (RQ1.1)
or number of options (RQ1.2).

8 / 15



Methodology for on-demand reduction

� 6 GNU programs debloated with Chisel, Debop, and Cov 2

@ Source level debloating of a program, regarding runtime
features + 2 usage profiles → controlled, on-demand reduction

The selected programs are the same as in the first experiment

—

Measured: binary size, execution time, and energy
consumption

—

Energy consumption is measured using the Jouleit

Each measurement was repeated 10 times (480, in total),
following the same methodology as in the first experiments

2
Qi Xin, et.al. Studying and Understanding the Tradeoffs Between Generality and Reduction in Software

Debloating. ASE’22. https://doi.org/10.1145/3551349.3556970

9 / 15

https://doi.org/10.1145/3551349.3556970


On-demand: Binary size and execution time reduction

Smaller binaries: all, 30.8%, 42.4%, and 42.5%

Execution time varied per program: 17.7% slower, 0%, 0.3% faster

10 / 15



On-demand: Energy consumption per program

11 / 15



Comparative analysis (lower and significant)

No significant cases among programs that consumed less

11 / 15



Comparative analysis (higher and significant)

11 / 15



On-demand: Energy correlates with execution time

Key insight: Energy consumption (RQ2.2) is strongly tied to
execution time, while reducing binary size through
debloating (RQ2.1) does not consistently lower
energy use and can even increase it.

12 / 15



Unintended energy impacts of feature reduction

The impact of feature reduction on energy consumption can be
counterintuitive

In-depth analysis: debloating removed optimizing code, leading to
higher energy consumption despite fewer executed lines

Mono-objective debloating (e.g., reducing binary size or attack
surface) can harm other properties, including energy consumption

13 / 15



ecv: Energy Consumption Visualizer

Measures and visualizes software
energy usage

Progress bars with real-world
device equivalents (e.g., LED bulb)

Helps developers track energy over
time and end-users compare
alternatives

ecv is open source and part of our
replimkdirion package

14 / 15



Energy Consumption Insights from Feature Reduction

First exploratory study on the impact of feature reduction on
energy consumption

We distinguished built-in vs. on-demand reduction

Does removing features always save energy?

Not necessarily, but smarter, energy-aware debloating can

—

Replication package:
swh:1:rev:85286751845d59e9d032ffc0b91b92b2220954df

15 / 15

https://archive.softwareheritage.org/swh:1:rev:85286751845d59e9d032ffc0b91b92b2220954df

