
1/10 1/10

A CALL FOR REMOVING VARIABILITY

Mathieu Acher12, Luc Lesoil1, Georges Aaron Randrianaina1,
Xhevahire Tërnava1, Olivier Zendra1

1Université de Rennes 1, CNRS, Inria, IRISA
2Institut Universitaire de France (IUF)

Rennes, France

VaMoS’23, January 25-27, 2023

2/10 2/10

Why removing variability?

Today’s software systems include a multitude of features and
tend to expand them over time

⊛ e.g., Linux: ≈20K options; ≈ 220,000 configuration space (?)

Development approaches strive to add variability

The removal of superfluous or underutilized variability has
received far less to no attention from our community

2/10 2/10

Why removing variability?

Today’s software systems include a multitude of features and
tend to expand them over time

⊛ e.g., Linux: ≈20K options; ≈ 220,000 configuration space (?)

Development approaches strive to add variability

The removal of superfluous or underutilized variability has
received far less to no attention from our community

2/10 2/10

Why removing variability?

Today’s software systems include a multitude of features and
tend to expand them over time

⊛ e.g., Linux: ≈20K options; ≈ 220,000 configuration space (?)

Development approaches strive to add variability

The removal of superfluous or underutilized variability has
received far less to no attention from our community

3/10 3/10

4/10 4/10

How reducing variability can be a good idea?

The ultra-high amount of variability in software systems is
exceeding human and even machine limits to deal with it [1]

Users are often overwhelmed by too many choices available[2]

and lack the expertise and time to customize the system

Up to 54.1% of options are rarely set by any user [3]

Up to 75% of feature toggles become unused after 49 weeks [4]

Up to 75.1% of software libraries are unneeded [5]

1: Hugo Martin, Mathieu Acher, Juliana Alves Pereira, Luc Lesoil, Jean-Marc Jézéquel, and Djamel Eddine
Khelladi. 2021. Transfer learning across variants and versions: The case of Linux kernel size. TSE 2021

2: Linus Torvalds. Fragmentation is why Linux hasn’t succeeded on Desktop. 2020

3: Tianyin Xu, Long Jin, Xuepeng Fan, Yuanyuan Zhou, Shankar Pasupathy, and Rukma Talwadker. Hey, you
have given me too many knobs!: Understanding and dealing with over-designed configuration in system
software. In the 10th Joint Meeting on Foundations of SE. 2015

4: Murali Krishna Ramanathan, Lazaro Clapp, Rajkishore Barik, and Manu Sridharan. Piranha: Reducing feature
flag debt at Uber. ICSE-SEIP 2020

5: César Soto-Valero, Nicolas Harrand, Martin Monperrus, and Benoit Baudry. A comprehensive study of bloated
dependencies in the maven ecosystem. EMSE 2021

Software systems are bloated [6,7]

· ·

5/10 5/10

6: Gerard J. Holzmann. Code Inflation. Jet Propulsion Laboratory, California Institute of Technology. 2015

7: Chenxiong Qian, Hyungjoon Koo, ChangSeok Oh, Taesoo Kim, and Wenke Lee. 2020. Slimium: Debloating
the Chromium Browser with Feature Subsetting. In SIGSAC CCS20. ACM, NY, 461–476

6/10 6/10

7/10 7/10

Why should someone bother and remove variability?

1
https://www.youtube.com/watch?v=28ZAoStv-Xw

Reliability
⊛ Missconfigurations are often the

source of software failures
⊛ May introduce technical debts
⊛ May change the primary purpose of

the system (e.g., cat)

Performance
⊛ Poor configuration choices
⊛ Systems tend to become encrusted

with dubious features

Security
⊛ May contain vulnerabilities
⊛ Corr: binary size, attack surface
⊛ Have the power to bankrupt the

company (e.g., Knight Capital)

Code complexity, testing burden,
energy consumption, code hygiene,
productivity of the devs, ...

Within 45 mins it lost $460M

”DO NOT EVER TOUCH THIS
BUTTON”1

https://www.youtube.com/watch?v=28ZAoStv-Xw

8/10 8/10

Why is removing variability not yet a major trend?

Removing code is not a rewarding activity for Devs and PMs

Lack of automated or integrated technologies

Removing code is a complex socio-technical task
⊛ i.e., limited studies, understanding, and expertise on removing variability
⊛ Only 3 papers in 10 years in VaMoS and SPLC have ”reducing” in the title

Removing variability is different from: disabling it, removing
dead (an unreachable) code, technical debt, or software bloat

9/10 9/10

How to Remove Variability?

Some of the possible research directions are:

Debloating variability (removing code is not completely new)
⊛ What are the variability units subject to removal: features, options,

feature flags, settings,...?; How to trace them?; How to remove them
without breaking the remained functionalities? Who should remove them?

Reverse engineering techniques should be revisited in light of
a new objective: removing the unneded variability

Designing software systems as ”variability removal friendly”

Developers’ workflow for removing variability

Removing variability: application or domain engineering?

10/10 10/10

A CALL FOR REMOVING VARIABILITY
Mathieu Acher, Luc Lesoil, Georges Aaron Randrianaina,
Xhevahire Tërnava, and Olivier Zendra

Related: Xhevahire Tërnava, Mathieu Acher, and Benoit Combemale. Specialization of Run-time Configuration Space
at Compile-time: An Exploratory Study. The 38th ACM/SIGAPP Symposium on Applied Computing, Tallinn,
Estonia, 2023 (SAC 2023). https://hal.science/hal-03916459

https://hal.science/hal-03916459

1/1 1/1

References and borrowed images

1. Image in slide 2: An adapted image from Kermit the Frog

2. Image in slide 3: Adapted the image from https://comicphrase.wordpress.com/reading/reading/

3. Image in sides 5 and 10: An adapted and borrowed images from Calvin and Hobbes

https://comicphrase.wordpress.com/reading/reading/

	Appendix

