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Why removing variability?

Today’s software systems include a multitude of features and
tend to expand them over time

⊛ e.g., Linux: ≈20K options; ≈ 220,000 configuration space (?)

Development approaches strive to add variability

The removal of superfluous or underutilized variability has
received far less to no attention from our community
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How reducing variability can be a good idea?

The ultra-high amount of variability in software systems is
exceeding human and even machine limits to deal with it [1]

Users are often overwhelmed by too many choices available[2]

and lack the expertise and time to customize the system

Up to 54.1% of options are rarely set by any user [3]

Up to 75% of feature toggles become unused after 49 weeks [4]

Up to 75.1% of software libraries are unneeded [5]

1: Hugo Martin, Mathieu Acher, Juliana Alves Pereira, Luc Lesoil, Jean-Marc Jézéquel, and Djamel Eddine
Khelladi. 2021. Transfer learning across variants and versions: The case of Linux kernel size. TSE 2021

2: Linus Torvalds. Fragmentation is why Linux hasn’t succeeded on Desktop. 2020

3: Tianyin Xu, Long Jin, Xuepeng Fan, Yuanyuan Zhou, Shankar Pasupathy, and Rukma Talwadker. Hey, you
have given me too many knobs!: Understanding and dealing with over-designed configuration in system
software. In the 10th Joint Meeting on Foundations of SE. 2015

4: Murali Krishna Ramanathan, Lazaro Clapp, Rajkishore Barik, and Manu Sridharan. Piranha: Reducing feature
flag debt at Uber. ICSE-SEIP 2020

5: César Soto-Valero, Nicolas Harrand, Martin Monperrus, and Benoit Baudry. A comprehensive study of bloated
dependencies in the maven ecosystem. EMSE 2021



Software systems are bloated [6,7]

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
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6: Gerard J. Holzmann. Code Inflation. Jet Propulsion Laboratory, California Institute of Technology. 2015

7: Chenxiong Qian, Hyungjoon Koo, ChangSeok Oh, Taesoo Kim, and Wenke Lee. 2020. Slimium: Debloating
the Chromium Browser with Feature Subsetting. In SIGSAC CCS20. ACM, NY, 461–476
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Why should someone bother and remove variability?

1
https://www.youtube.com/watch?v=28ZAoStv-Xw

Reliability
⊛ Missconfigurations are often the

source of software failures
⊛ May introduce technical debts
⊛ May change the primary purpose of

the system (e.g., cat)

Performance
⊛ Poor configuration choices
⊛ Systems tend to become encrusted

with dubious features

Security
⊛ May contain vulnerabilities
⊛ Corr: binary size, attack surface
⊛ Have the power to bankrupt the

company (e.g., Knight Capital)

Code complexity, testing burden,
energy consumption, code hygiene,
productivity of the devs, ...

Within 45 mins it lost $460M

”DO NOT EVER TOUCH THIS
BUTTON”1

https://www.youtube.com/watch?v=28ZAoStv-Xw
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Why is removing variability not yet a major trend?

Removing code is not a rewarding activity for Devs and PMs

Lack of automated or integrated technologies

Removing code is a complex socio-technical task
⊛ i.e., limited studies, understanding, and expertise on removing variability
⊛ Only 3 papers in 10 years in VaMoS and SPLC have ”reducing” in the title

Removing variability is different from: disabling it, removing
dead (an unreachable) code, technical debt, or software bloat
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How to Remove Variability?

Some of the possible research directions are:

Debloating variability (removing code is not completely new)
⊛ What are the variability units subject to removal: features, options,

feature flags, settings,...?; How to trace them?; How to remove them
without breaking the remained functionalities? Who should remove them?

Reverse engineering techniques should be revisited in light of
a new objective: removing the unneded variability

Designing software systems as ”variability removal friendly”

Developers’ workflow for removing variability

Removing variability: application or domain engineering?
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Related: Xhevahire Tërnava, Mathieu Acher, and Benoit Combemale. Specialization of Run-time Configuration Space
at Compile-time: An Exploratory Study. The 38th ACM/SIGAPP Symposium on Applied Computing, Tallinn,
Estonia, 2023 (SAC 2023). https://hal.science/hal-03916459

https://hal.science/hal-03916459
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References and borrowed images

1. Image in slide 2: An adapted image from Kermit the Frog

2. Image in slide 3: Adapted the image from https://comicphrase.wordpress.com/reading/reading/

3. Image in sides 5 and 10: An adapted and borrowed images from Calvin and Hobbes

https://comicphrase.wordpress.com/reading/reading/
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